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ABSTRACT

This project describes an approach to creating autonomous systems that can continue to learn throughout their lives,
that is, to be adaptive to changes in the environment and in their own capabilities. Evolutionary learning methods
have been found to be useful in several areas in the development of autonomous vehicles. In our research, evolutionary
algorithms are used to explore alternative robot behaviors within a simulation model as a way of reducing the overall
knowledge engineering e�ort. The learned behaviors are then tested in the actual robot and the results compared.
Initial research demonstrated the ability to learn reasonable complex robot behaviors such as herding, and navigation
and collision avoidance using this o�ine learning approach. In this work, the vehicle is always exploring di�erent
strategies via an internal simulation model; the simulation, in turn, is changing over time to better match the world.

This model, which we call Continuous and Embedded Learning (also referred to as Anytime Learning), is a general
approach to continuous learning in a changing environment. The agent's learning module continuously tests new
strategies against a simulation model of the task environment, and dynamically updates the knowledge base used by
the agent on the basis of the results. The execution module controls the agent's interaction with the environment, and
includes a monitor that can dynamically modify the simulation model based on its observations of the environment.
When the simulation model is modi�ed, the learning process continues on the modi�ed model. The learning system
is assumed to operate inde�nitely, and the execution system uses the results of learning as they become available.
Early experimental studies demonstrate a robot that can learn to adapt to failures in its sonar sensors.
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1. INTRODUCTION

An important problem arising in robots that are expected to perform autonomously for extended periods is how
to adapt the robot's rules of behavior in response to unexpected changes in its own capabilities. For example,
suppose the robot periodically checks its sensors and its ability to perform basic actions. If it �nds that some sensors
or actions are no longer available, perhaps due to a problem with the robot's hardware or due to some undetected
environmental cause, then it must learn new rules for performing its mission that use whatever remaining capabilities
are still available.

We have developed an approach to this problem that we call Anytime Learning ,1{3 or more recently, Continuous
and Embedded Learning (CEL). In this approach, the robot interacts both with the external environment and with an
internal simulation. The robot's execution module controls the robot's interaction with the environment, and includes
a monitor that dynamically modi�es the robot's internal simulation model based on the monitor's observations of
the actual robot and the sensed environment. The robot's learning module continuously tests new strategies for
the robot against the simulation model, using a genetic algorithm4 to evolve improved strategies, and updates the
knowledge base used by the execution module with the best available results. Whenever the simulation model is
modi�ed due to some observed change in the robot or the environment, the genetic algorithm is restarted on the
modi�ed model. The learning system operates inde�nitely, and the execution system uses the results of learning as
they become available.
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Figure 1. The Continuous and Embedded Learning Model

In this paper, we examine the CEL model with respect to sensor failures, speci�cally, how the robot can learn to
adapt to failures in its sensor capabilities over time. We show that a robot adapt to the partial loss of its sensors
and learn to use di�erent sensors to continue to perform a door traversal task. A simulation study and execution on
an actual mobile robot shows that the approach yields e�ective adaptation to a variety of partial sensor failures.

In the next section, we will describe the Continuous and Embedded Learning model. Section 3 discusses related
work. In Section 4 we will describe the task domain. This is followed by description of the modules of the CEL
model, and simulation and experimental results showing the adaptation of a robot to partial sensor failues.

2. CONTINUOUS AND EMBEDDED LEARNING

The Continuous and Embedded Learning model addresses the problem of adapting a robot's behavior in response
to changes in its operating environment and its capabilities. The outline of the approach is shown in Figure 1.

There are two main modules in the CEL model. The execution module controls the robot's interaction with
its environment. The learning module continuously tests new strategies for the robot against a simulation model
of the environment. When the learning module discovers a new strategy that, based on simulation runs, appears
to be likely to improve the robot's performance, it updates the rules used by the execution module. The execution
module includes a monitor that measures aspects of the operational environment and the robot's own capabilities,
and dynamically modi�es the robot's internal simulation model based on these observations. When the monitor
modi�es the simulation because of an environmental change, it noti�es the learning system to restart its learning
process on the new simulation.

This general architecture may be implemented using a wide variety of execution modules, learning methods, and
monitors. The key characteristics of the approach are:

� Learning continues inde�nitely. This is unlike most machine learning methods, which employ a training phase,
followed by a performance phase in which learning is disabled. This lifetime learning is what allows the system
to be adaptive after being �elded.

� The learning system experiments on a simulation model. For most real-world robotic applications, experiment-
ing with the physical robot may be time-consuming or dangerous. Using a simulation models permits the safe
use of learning methods that consider strategies that may occasionally fail.

� The simulation model is updated to re
ect changes in the real robot or environment. This is a secondary type
of learning of the model. While this is a major research issue in its own right, we are currently not concerned
with the learning at this level, and construct the monitor and simulation as appropriate. That is, we assume
that it is possible to monitor the condition of the robot's sensors and actuators. For our purposes, it is not
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Figure 2. The door traversal task.

necessary to diagnose the cause of any detected failure, only the symptoms. We assume that the simulation
has been constructed to allow the instantiation of sensor and actuator failure modes.

This �nal point re
ects our assumption that the robot designer generally has at least partial knowledge of the
robot and the environment. Knowledge that is relatively certain can be embodied in the �xed part of the simulation.
Such knowledge might include certain �xed characteristics of the physical environment (e.g., gravity), as well as some
aspects of the robot's design and performance. On the other hand, the robot designer should also identify those
aspects of the environment and the robot's capabilities that are uncertain, and include these as changeable parts of
the simulation module.

3. RELATED WORK

There has been a great deal of work done in the area of evolution of behaviors for autonomous robots. A very
common approach has been in the evolution of neural controllers for robots.5,6 An alternative approach has been
the evolution of stimulus-response rules.7

An interesting problem has been how to add on-line adaptation to these systems in order to handle problems such
as changes in the environment and to the robots capabilities. Early interesting work includes systems where both
the form and the function are coevolved,8{11 but these systems have not performed studies yet on actual robots, nor
are these techniques useful for on-line performance.

Another very interesting area in the use of evolutionary algorithms on-line on real robots.12 While this does
allow a robot to be adaptive during performance, it is not clear whether this is appropriate for large robots in the
real world, where trial and error experimentation can lead to damage or dangerous behavior. Our approach solves
this problem by only allowing experimentation on a simulation that is internal to the robot.

4. PERFORMANCE TASK

This task requres a robot to go from one side of a room to the other, passing through an opening in a wall placed
across the room, as illustrated in Figure 2.

In each trial, the robot is placed randomly along the starting line four feet in front of the back wall, facing in a
randomly selected direction from -90 to 90 degrees (with 0 degrees facing the goal). The center of the front wall is
located 12.5 feet from the back wall. The room is 25 feet wide. The location of the six foot opening in the front wall
is also randomly selected each trial.



The robot must then reactively navigate through the opening reaching the goal line one foot beyond the wall,
by learning a set of rules which map the current sensors to the actions to be performed by the robot, at a one hertz
decision rate. The robot has a limited time to perform the task. Exceeding the time limit, or having a collision with
any of the walls ends the current trial.

The robot used in these experiments is a Nomadic Technologies Nomad 200 Mobile Robot, a three-wheeled,
synchronized-steering vehicle. The internal simulation used by the robot for learning approximated the robots
sensors and e�ectors.

5. EXECUTION MODULE

The execution module for the robot includes a rule-based system that operates on reactive (stimulus-response) rules.
A typical rule might be:

IF range = [35, 45] AND front sonar < 20 AND right sonar > 50 THEN SET turn = -24 (Strength 0.8)

Each decision cycle, the execution system compares the left hand side of each rule to the current sensor readings,
selecting the best rule (after con
ict resolution). That rule's action is then executed causing the robot to move. This
is repeated until the robot succeeds or fails at the task.

In this task, the robot uses its seven front most facing sonars. Each sonar has a angular resolution of 22.5
degrees, with the front most sonar facing directly ahead, giving the robot a total sonar coverage of 157.5 degrees. We
designate these sonars as far left, left, front left, front, front right, right, and far right. Each sonar has a maximum
range of approximately 14 feet. The sonar values are all discretized; they are partitioned into intervals of 24 inches.
In addition to the sonars, the robot also has a sensor that gives the range to the goal from 0 to 14 feet in 5 inch
intervals, and the robots heading within the room from 0 to 359 degrees in 22.5 degree intervals.

The learned actions are velocity mode commands for controlling the translational rate and the steering rate of
the robot. The translation rate is given as -4 to 10 inches/sec in 2 inch/sec intervals. The steering command is given
in intervals of -10 degrees/sec from -30 to 30 degrees/sec. At each decision step, the system must choose a turning
rate and steering rate based on the current sensors.

The rule strength is set by the learning system to estimate the quality of the rule. The execution module uses
rule strengths to resolve con
icts among multiple rules that match the current sensors readings, but suggest di�erent
actions. In such cases, rules with higher strength are favored. See13 for details.

5.1. The Monitor

In this study, the monitor periodically measures the output from the sonars, and compares them to recent readings
and to the direction of motion. If the robot is moving forward, and the value of the sonar reads zero repeatedly, that
particular sonar is marked as being defective. The monitor then modi�es the simulation used by the learning system
to replicate the failed sonar.

It is important to note that the monitor is required only to identify symptoms of problems, not the causes.

6. LEARNING MODULE

The learning module uses SAMUEL,13 a learning program that uses genetic algorithms and other competition-based
heuristics to improve its decision-making rules. Each individual in SAMUEL's genetic algorithm is an entire rule set,
or strategy, for the robot. We have previously reported on using SAMUEL to learn simple robot behaviors such as
navigation and collision avoidance,14,15 robot herding,16 and in other complex domains.

When the monitor notices a failure in any of the seven sonars, the learning module's population is re-initialized
and continues with the modi�ed simulation model. In this study, we use 50% of the population at the time of the
detected failure and replace the other 50% with copies of the initial rule set (generally, go toward the goal line).

We have also used a case-based approach to re-initializing the population. The learning system re-initializes
the population of strategies in the genetic algorithm by �nding nearest neighbors from the case base consisting of
previously learned strategies. Strategies in the case base are indexed by the capability list in place at the time
the strategy was learned. Using previously learned strategies to initialize the population allows the system to very
quickly adapt to situations that are similar to those seen before. See2 for more details.
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Figure 3. Learning curve showing adaptation to sensor failures occurring at generation 50. Best performance
indicates the success rate for the best strategies in the current population. Results averaged over 10 runs.

7. EXPERIMENTAL METHODOLOGY

The robot begins with a set of default rules for moving toward to goal line, which give an initial success rate of 25%
of getting through the doorway. These initial rules basically give the robot the direction to the goal line, but say
nothing about obstacles or the walls themselves. The learning system starts with a simulation model that includeds
all sonars working.

After an initial period of learning, one or more sonars are then blinded. In simulation, the failed sonar was
modeled as a constant, minimum-value sonar reading; on the actual robot, one of the sonar sensors would be covered
with rigid material. Once the monitor detects the failed sensor, the learning simulation is adjusted to re
ect the
failure, the population of competing strategies is re-initialized as described previously, and learning continues. The
online robot uses the best rules discovered by the learning systems since the last change to the learning simulation
model.

We initially ran an experiment with the robot adapting to a blinded front sonar after 50 generations, but the
performance dropped a non-signi�cant amount before continuing to improve. This is indicative of the robust rules
that the SAMUEL system tends to learn. In a second experiment, we blinded the front sonar and the front right
sonar, still without a signi�cant drop in performance. In the results reported here, three sensors were failed (front,
front right, and right). After the sensors were blinded, the system was allowed to continue for another 50 generations.

In these experiments we used threshold selection in the evolutionary algorithms in which the top 50% of the
population reproduces (producing two o�spring each). The payo� function was based on the time it took for the
robot to reach the goal line. A collision resulted a a very low payo�, and exceeding the time limit resulted in a low
payo�.

8. RESULTS

8.1. Quantitative Results

The experiment was repeated ten times. Figure 3 shows the average performance over time for these ten runs. The
x-axis shows the generation, and the y-axis shows the external performance { the number of times out of 100 that the
robot succedded in getting through the opening. The dotted vertical line at generation 50 shows where the sensor
failed.

As can be seen from this learning curve, the robot initially learns to improve its performance in this task from
25% to 63% with all seven sonar sensors operating. At the beginning of generation 50, the three sonars (front, front
right, and right) fail. The performance then drops to 37%, but then continues to improve as the monitor identi�es
the failed sonars, modi�es the simulation, and learning continues with the new simulation model.



Figure 4. Robot in motion with all sensors intact, a) during run and b) at goal.

Figure 5. Robot in motion after adapting to loss of three sensors, front, front right and right, a) during run, and
b) at goal.

8.2. Qualitative Results

Qualitatively, we observed the following behaviors. Figure 4 shows the simulation with all of the sensors working.
The picture on the left shows the simulated robot during the run, while the picture on the right shows the robot
reaching the goal. In Figure 5, we see the simulated robot with three failed sonars as described above. The picture
on the left shows the robot during the run, while the picture on the right shows the robot at the goal. Note that
interesting behavior in the second set of pictures, as indicated by the trail showing the robot's path. The robot uses
a swaying motion in order to sweep its working sensors across the space in front of the robot. This behavior allows
the robot to perform the task suucessfully.

In the experimental runs we performed, when the forward facing sensors are blocked, the robot initially responds
by refusing to move forward. This is fail-safe kind of response, as it allows the o�ine learning system to come up
with a better strategy while the online robot just sits there thinking.

Figure 6 shows shots of the actual robots. The �rst picture shows the robot �nding the opening with its front
sonar, and proccedding straight at and through the opening. The second picture shows the front sonar covered to
simulate its failure. The third picture shows the robot solving the task after adapting to a sonar failure. Note that
it is now using a side sonar to �nd the opening and then turns towards the opening.

9. DISCUSSION

This work shows that the Continuous and Embedded Learning model is a promising approach to adapting to partial
sensor failures. When the monitor detects a sensor failure, it modi�es the system's learning simulation. The learning
system operates inde�nitely, and the execution system uses the results of learning as they become available. Combined



Figure 6. a) Robot with full sensors passing directly through doorway. b) Robot with front sonar covered. c)
Robot after adapting to covered sonar. It uses side sonar to �nd opening, and then turns into the opening.

with our previous work showing adaptation to changing environments and actuator failures,1{3 this work indicates
the generality of the CEL model for the design of robust autonomous robot systems. Future work will investigate the
ability to adapt to combinations of sensor and actuator failures, and attempt to quantify the limits of adaptability
under this model.
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